М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ззвееррекк
ззвееррекк
07.09.2022 23:42 •  Геометрия

Хорда окружности равна 10 см. через один конец хорды проведена касательная к окружности, а через другой — секущая, параллельная касательной. определить радиус окружности, если внутренний отрезок секущей равен 12 см.

👇
Ответ:
alinaklepcova
alinaklepcova
07.09.2022
Дано: окружность с центром в точке О.
ВС = 10 см - хорда.  СК - касательная. 
АВ║СК,  АВ = 12 см
Найти: R

ОС⊥СК   -   радиус в точку касания
АВ║СК  ⇒   CD⊥АВ    ⇒
AD = DB  -   радиус, перпендикулярный хорде, делит ее пополам ⇒
CD - высота и медиана в ΔABC   ⇒
ΔABC - равнобедренный : AC = BC = 10
Площадь ΔABC по формуле Герона
p = \frac{AB+BC+AC}{2} = \frac{12+10+10}{2} =16 \\ \\ S_{ABC}= \sqrt{p(p-AB)(p-BC)(p-AC)} = \\ \\ = \sqrt{16(16-12)(16-10)(16-10)} = \\ \\ = \sqrt{16*4*6*6} =4*2*6=48
Площадь ΔABC через радиус описанной окружности
S_{ABC}= \frac{AB*AC*BC}{4R} \\ \\ R= \frac{AB*AC*BC}{4S_{ABC}} = \frac{12*10*10}{4*48} = \frac{25}{4} =6,25

Радиус окружности  R = 6,25
Хорда окружности равна 10 см. через один конец хорды проведена касательная к окружности, а через дру
4,6(96 оценок)
Открыть все ответы
Ответ:
galinapetrovic
galinapetrovic
07.09.2022

Билет 1.

1. Точка и прямая - основные фигуры на плоскости. Они не имеют определения. Точка не имеет размеров (длины, ширины, радиуса). Точки обозначаются заглавными латинскими буквами.

Прямая бесконечна. Ее можно представить как туго натянутую нить, бесконечную в обе стороны. На рисунке изображается часть прямой. Прямая обозначается по названию двух точек, лежащих на ней, или строчной латинской буквой.

Отрезок - это часть прямой, ограниченная точками с двух сторон. Точки, ограничивающие отрезок, называются его концами. Отрезок имеет длину. Отрезок обозначается двумя заглавными латинскими буквами - по названию его концов.

2. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство.  Построим треугольник А₁В₁С₁, совместив равные стороны АС и А₁С₁ данных треугольников, как на рисунке, так, чтобы вершины В и В₁ оказались по разные стороны от прямой АС.

Тогда ΔВАВ₁ равнобедренный и значит ∠1 = ∠2 как углы при основании равнобедренного треугольника,

ΔВСВ₁ равнобедренный и ∠3 = ∠4, ⇒

∠АВС = ∠АВ₁С и значит ΔАВС = ΔА₁В₁С₁ по двум сторонам и углу между ними.

Билет 2.

1. В зависимости от вида углов треугольники бывают:

остроугольные (все углы острые);прямоугольные (один угол прямой);тупоугольные (один угол тупой);

В зависимости от сторон:

разносторонние (нет равных сторон);равнобедренные (две стороны равны);равносторонние (все стороны равны).

2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: с∩а, c∩b, ∠1 = ∠2.

Доказать: a║b.

Доказательство:

∠3 = ∠1 как вертикальные,

∠2 = ∠1 по условию, значит

∠3 = ∠2, а эти углы - накрест лежащие при пересечении прямых а и b секущей с, значит а║b по первому признаку параллельности прямых (по накрест лежащи углам).

4,4(65 оценок)
Ответ:
AXMED2001
AXMED2001
07.09.2022

Билет 1.

1. Точка и прямая - основные фигуры на плоскости. Они не имеют определения. Точка не имеет размеров (длины, ширины, радиуса). Точки обозначаются заглавными латинскими буквами.

Прямая бесконечна. Ее можно представить как туго натянутую нить, бесконечную в обе стороны. На рисунке изображается часть прямой. Прямая обозначается по названию двух точек, лежащих на ней, или строчной латинской буквой.

Отрезок - это часть прямой, ограниченная точками с двух сторон. Точки, ограничивающие отрезок, называются его концами. Отрезок имеет длину. Отрезок обозначается двумя заглавными латинскими буквами - по названию его концов.

2. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство.  Построим треугольник А₁В₁С₁, совместив равные стороны АС и А₁С₁ данных треугольников, как на рисунке, так, чтобы вершины В и В₁ оказались по разные стороны от прямой АС.

Тогда ΔВАВ₁ равнобедренный и значит ∠1 = ∠2 как углы при основании равнобедренного треугольника,

ΔВСВ₁ равнобедренный и ∠3 = ∠4, ⇒

∠АВС = ∠АВ₁С и значит ΔАВС = ΔА₁В₁С₁ по двум сторонам и углу между ними.

Билет 2.

1. В зависимости от вида углов треугольники бывают:

остроугольные (все углы острые);прямоугольные (один угол прямой);тупоугольные (один угол тупой);

В зависимости от сторон:

разносторонние (нет равных сторон);равнобедренные (две стороны равны);равносторонние (все стороны равны).

2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Дано: с∩а, c∩b, ∠1 = ∠2.

Доказать: a║b.

Доказательство:

∠3 = ∠1 как вертикальные,

∠2 = ∠1 по условию, значит

∠3 = ∠2, а эти углы - накрест лежащие при пересечении прямых а и b секущей с, значит а║b по первому признаку параллельности прямых (по накрест лежащи углам).

4,7(95 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ