Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
S = 30*40/2 = 600см².
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
S = 30*40/2 = 600см².
Осевым сечением конуса является равнобедренный треугольник.
Из этого следует, что боковые стороны этого треугольника равны 10.
И, соответственно, основание будет рано 8.
Основание треугольника, являющимся осевым сечением конуса совпадает с диаметрoм оружности, являющейся основанием конуса.
D=2r
r=D\2
r=8\2=4