Диагонали разделят ромб на 4 равных треугольника.Рассм. один из них. Пусть это треуг.АВО, где угол В - острый угол ромба. АО=1/2 *АО=1/2 *6=3, ВО=1/2 *ВД=1/2 *8=4 Прямоуг. треуг-к АВО имеет стороны 3,4,5, где АВ=5 - гипотенуза Угол АВС=2*<АВО=2*a (обозначили <ABO=a) tga=3/4, sina=3/5, cosa=4/5
Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Вот решение, попробуйте разобраться. :) Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB. Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи) Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB; то есть MC = MA + MB
АО=1/2 *АО=1/2 *6=3, ВО=1/2 *ВД=1/2 *8=4
Прямоуг. треуг-к АВО имеет стороны 3,4,5, где АВ=5 - гипотенуза
Угол АВС=2*<АВО=2*a (обозначили <ABO=a)
tga=3/4, sina=3/5, cosa=4/5