В прямоугольном треугольнике ABC2C = 90°, 24 = 60°. Найдите гипотенузу и меньший катет этого треугольника, если известно, что их сумма равна 36.9 см.
Задача 1. 1)Найдем объем призмы по формуле V=S•h , где S-площадь основания. Sоснования=1/2аb, где а=6, а b=8. Sосн.=48/2=24 см^2. Т.к. призма прямая, то h=боковому ребру=12. V=24•12=288 см^3. 2)Sполн.=сумме всех площадей поверхности=2Sосн.+S1бок+ S2бок+S3бок. Sосн=24 см^2. Найдем S1бок. Т.к. боковая сторона это прямоугольник, то S=ab, где a-длина, а b-ширина прямоугольника. а=12 см, b=8 см, S1бок=12•8=96 см^2, S2бок.=12•6=72см^2. Чтобы найти S3бок, найдем b по теореме Пифагора: √6^2+8^2=√100=10 см. S3бок=12•10=120см^2. Найдем Sполн.=2•24+96+72+120=336см^2. | ответ: Sполн=336 см^2, V=288см^3.
Пирамида называется правильной, если её основание - правильный n-угольник, а все боковые рёбра равны. Т.е. боковые грани - равнобедренные треугольники. По условию стороны основания и боковые ребра равны а, следовательно, боковые грани - не просто равнобедренные, но и правильные треугольники. Средняя линия треугольника равна половине стороны, которой она параллельна. Сечение - треугольник. Его боковые стороны также средние линии боковых граней. Следовательно, это сечение - равносторонний треугольник Сечение и грани пирамиды - подобные треугольники с коэффициентом подобия 1/2. Площадь правильного треугольника находят по формуле S=(а²√3):4. Отношение площадей подобных фигур равно квадрату коэффициента подобия. Площадь сечения пирамиды относится к площади грани как k²=(1/2)²=1/4 Sсеч. =S АВС:4 Sсеч. =(а²√3):16
в прямоугольном треугольнике ABC угол C = 90°, угол A = 60°, так? если да, то
по свойству углов треугольника,
угол B = 180° – 90° – 60° = 30°
катет, лежащий против угла в 30°, равен половине гипотенузы. Это и есть меньший катет. Получается
AC = AB / 2, AB = 2 * AC [1]
по условию задания, AB + AC = 36.9 см [2]
подставим [1] в [2], получим
2 * AC + AC = 36.9
3 * AC = 36.9
AC = 36.9 / 3 = 12.3 см
подставим полученное значение в [1], получим
AB = 2 * AC = 2 * 12.3 = 24.6 см
Итого, гипотенуза равна 24.6 см, меньший катет равен 12.3 см