Диагональ ВD делит трапецию на два прямоугольных треугоьника АВD и ВDС. Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD, значит, и ∠ВDС=∠ВАD. Треугольники АВD и ВDС подобны. Из их подобия АD:ВD=ВD:ВС ВДD²=2 ВС Из треугольника ВСD по т. Пифагора ВС²=СD²-ВС² Но ВD²=2ВС Произведя в уравнении замену, получим: 2 ВС=СD²-ВС² ⇒ ВС²+2ВС-25=0 Решим квадратное уравнение. D=b²-4ac=2²-4·1·(-25)=104 ВС₁=(-2+2√26):2=√26-1≈ 4,099 Второй корень отрицательный и не подходит. По т.Пифагора найдем ВD. ВD²=2ВС=8,198 Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н. В прямоугольном треугольнике АСН гипотенуза АН=АD+DН DН=ВС=4,099 СН²=ВD²= 8,198 АС²=АН²+СН²=(2+4,099)²+8,198 АС²≈45,3958 АС≈6,7376 ---- [email protected]
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4