М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ононрро
ононрро
29.12.2020 15:45 •  Геометрия

Решите призма и параллепипед. площади боковой и полной поверхностей призмы и параллелепипед. 1.в треугольной наклоной призме расстояния между боковыми ребрами равны, 20,34 и 42 см.вычислите расстояние между большой
боковой гранью и противоположным ей боковым ребром. 2.в прямоугольном параллелепипеде стороны оснований относятся ,как 7: 24, а площадь диагонального сечения равны 50 см в квадрате.вычислите площадь боковой
поверхности параллелепипеда.

👇
Ответ:
tntemirlan
tntemirlan
29.12.2020

1. Если провести сечение призмы перпендикулярно боковым ребрам, то получится треугольник со сторонами (20, 34, 42). Искомое расстояние равно высоте этого треугольника к стороне 42. 

Я вам предоставлю эту возможность - сосчитать площадь по Герону и поделить на 42/2. Или найти эту высоту каким-то еще "штатным Я же быстро просмотрю список Пифагоровых троек и увижу, что если взять 2 треугольника со сторонами (12, 16, 20) и (16, 30, 34) и приставить друг к другу катетами 16, так, чтобы катеты 12 и 30 лежали бы на одной прямой по разные стороны от катета 16, то как раз и получится треугольник (20, 34, 42) причем высота к стороне 42 равна 16 и делит её на отрезки 12 и 30. ответ 16.

2. Если меньшая сторона основания равна 7*х, то вторая равна 24*х, диагональ 25*х (это такое заклинание 7,24,25 :) в первом пункте было два таких заклинания :) проверьте ,что 7,24,25 - Пифагорова тройка). Если высота (боковое ребро) Н, то диагональное сечение выглядит так 25*х*Н = 50, то есть х*Н = 2, а площадь боковой поверхности равна (2*7+2*24)*х*Н = 4*31 = 124.

 

4,5(88 оценок)
Открыть все ответы
Ответ:
mertysan
mertysan
29.12.2020

2)

ну если есть длины всех сторон то находим синус нужного вам угла, потом вспоминаем свойства корень(sin^2x+cos^2x)=1 и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус

1)

Это тупой угол, тангенс которого равен -3.  2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой: 
d = корень из ( (x2-x1)^2 + (y2-y1)^2 ), 
где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате. 
Отсюда: 
KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2). 
KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2). 
ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2). 

косинус L = косинус 90 градусов = 0. 
косинус М = ML/KM = 4/5 = 0,8. 
косинус K = KL/KM = 3/5 = 0,6. 

H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно. 
Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH: 
Для треугольника KLH: LH^2 = KL^2 - KH^2 
Для треугольника MLH: LH^2 = ML^2 - MH^2 
Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем: 
КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух. 
Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно: 
LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L 
МН = (16/5) * корень из 2. 
Находим косинусы углов образованых высотой из треугольников KLH и MLH: 
косинус HLM = LH/LM = 3/5 = 0,6. 
косинус HLK = LH/KL = 4/5 = 0,8.  вопрос 1) вектора 
ОА(-1;3)...|OA|=V10 
ОХ(1;0)...|OX|=1 

cos a=-1/V10 
cos a=-0,31622 
a=108 гр 26 мин
4,4(43 оценок)
Ответ:
YulyaDremina
YulyaDremina
29.12.2020

2)

ну если есть длины всех сторон то находим синус нужного вам угла, потом вспоминаем свойства корень(sin^2x+cos^2x)=1 и исходя из этого делаем вывод что 1-sin^2x и есть искомый косинус

1)

Это тупой угол, тангенс которого равен -3.  2)Необходимо найти его стороны KL, ML и KM. Для этого можно воспользоваться теоремой Пифагора и найти каждую из сторон построив для них отдельные прямоугольные треугольники, сторонами которых будут являться одна из сторон треугольника KLM и перпендикуляры опущенные на координатные оси, третьей вершиной таких треугольников будет точка пересечения этих перпендикуляров. Так искомая сторона окажется гипотенузой в этих отдельных треугольниках, а катеты определяются по координатным осям, так как они им параллельны. Если непонятно. Воспользуйтесь этой формулой: 
d = корень из ( (x2-x1)^2 + (y2-y1)^2 ), 
где d - искомая сторона треугольника KLM, (x1;y1) и (x2;y2) - координаты ее концов; ^2 - в квадрате. 
Отсюда: 
KM= корень из (7^2 + 1^2) = корень из (50) = 5 * корень из (2). 
KL= корень из (3^2 + 3^2) = корень из (18) = 3 * корень из (2). 
ML= корень из (4^2 + 4^2) = корень из (32) = 4 * корень из (2). 

косинус L = косинус 90 градусов = 0. 
косинус М = ML/KM = 4/5 = 0,8. 
косинус K = KL/KM = 3/5 = 0,6. 

H - ?Следуя логике это высота. Высота опущеная с вершин М и K будет совпадать со сторонами треугодьника ML и KL, а угол Н с углами М и К соответсвенно. 
Высота опущенная с вершины L находится иначе. Она образует два треугольника KLH и MLH. Можно доказать через подобие треугольников, что отношение сторон или косинус угла HLM равен косинусу угла К, а косинус угла HLК равен косинусу угла М. Но можно сделать и иначе - составив уравнения для общей стороны треугольников LH: 
Для треугольника KLH: LH^2 = KL^2 - KH^2 
Для треугольника MLH: LH^2 = ML^2 - MH^2 
Получили систему уравнений. Отняв от первого уравнения второе получим: KL^2 - ML^2 - KH^2 + -MH^2 = 0. Подставляем в полученное уравнение МН = КМ - КН и выразив КН получаем: 
КН = ( KL^2 - ML^2 +КМ^2 ) / ( 2 * KM) = ( 9/5 ) * корень из двух. 
Находим LН и КМ подставляя полученое значение КН в первою и второе уравнение системы соответственно: 
LН = (12/5) * корень из 2; - это высота треугольника KLM опущеная с вершины L 
МН = (16/5) * корень из 2. 
Находим косинусы углов образованых высотой из треугольников KLH и MLH: 
косинус HLM = LH/LM = 3/5 = 0,6. 
косинус HLK = LH/KL = 4/5 = 0,8.  вопрос 1) вектора 
ОА(-1;3)...|OA|=V10 
ОХ(1;0)...|OX|=1 

cos a=-1/V10 
cos a=-0,31622 
a=108 гр 26 мин
4,7(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ