Решите : дано: окр(о; 1) и окр(о1; 8), оо1=21 найти: r окружности которая касается двух данных окружностей и прямой оо1 p.s. трудная отнеситесь к ней серьезно
Я очень серьезно отнесся :) Если соединить центры трех окружностей, то получится треугольник со сторонами R + 1; R + 8; 21; и у этого треугольника высота к стороне 21 равна R. Надо составить два уравнения для такого треугольника x^2 + R^2 = (R + 1)^2; (21 - x)^2 + R^2 = (R + 8)^2; x - расстояние от точки О (центра окружности радиуса 1) до точки касания искомой окружности с прямой ОО1; Эта система сводится к квадратному уравнению для x (исключением R) x^2 + 6*x - 55 = 0; откуда x = 5; (отрицательное значение -11 отброшено) R = 12;
На самом деле, если предположить, что треугольник составлен из двух Пифагоровых (то есть из двух прямоугольных треугольников с целочисленными длинами сторон), то ответ сразу можно угадать. Два треугольника 5,12,13 и 12, 16, 20 приставлены друг к другу катетами 12, так, что катеты 16 и 5 образуют сторону 21. Все требования при этом соблюдены 13 = 12 + 1; 20 = 12 + 8; 5 + 16 = 21; и радиус равен 12;
1) градусная мера внешнего угла равна сумме градусных мер двух углов не смежных с ним. Углы A и B не смежных с улом C значит он равен 130 градусам. ответ: 130 градусов 2) есть свойство что градусная мера двух любых смежных углов в треугольнике равна 180 градусов если представить что он равносторонний то все его смежные углы должны быть либо 155 градусов( тогда ни одна сумма двух смежных углов не будет равна 180 градусов значит это отложим) либо 80 градусов ( также не совпадает со свойством) если прикинуть что он равнобедренный то есть два варианта расположения смежных углов ( два из них должны быть равны) 155;155;80 или 80;80;155 оба варианта не соответствуют свойству( не одна сумма смежных углов не равна 180 градусам) остался только 1 вариант он РАЗносторонний. ответ: треугольник РАЗносторонний.
1) градусная мера внешнего угла равна сумме градусных мер двух углов не смежных с ним. Углы A и B не смежных с улом C значит он равен 130 градусам. ответ: 130 градусов 2) есть свойство что градусная мера двух любых смежных углов в треугольнике равна 180 градусов если представить что он равносторонний то все его смежные углы должны быть либо 155 градусов( тогда ни одна сумма двух смежных углов не будет равна 180 градусов значит это отложим) либо 80 градусов ( также не совпадает со свойством) если прикинуть что он равнобедренный то есть два варианта расположения смежных углов ( два из них должны быть равны) 155;155;80 или 80;80;155 оба варианта не соответствуют свойству( не одна сумма смежных углов не равна 180 градусам) остался только 1 вариант он РАЗносторонний. ответ: треугольник РАЗносторонний.
Если соединить центры трех окружностей, то получится треугольник со сторонами
R + 1; R + 8; 21; и у этого треугольника высота к стороне 21 равна R.
Надо составить два уравнения для такого треугольника
x^2 + R^2 = (R + 1)^2;
(21 - x)^2 + R^2 = (R + 8)^2;
x - расстояние от точки О (центра окружности радиуса 1) до точки касания искомой окружности с прямой ОО1;
Эта система сводится к квадратному уравнению для x (исключением R)
x^2 + 6*x - 55 = 0; откуда x = 5; (отрицательное значение -11 отброшено)
R = 12;
На самом деле, если предположить, что треугольник составлен из двух Пифагоровых (то есть из двух прямоугольных треугольников с целочисленными длинами сторон), то ответ сразу можно угадать. Два треугольника 5,12,13 и 12, 16, 20 приставлены друг к другу катетами 12, так, что катеты 16 и 5 образуют сторону 21. Все требования при этом соблюдены
13 = 12 + 1; 20 = 12 + 8; 5 + 16 = 21; и радиус равен 12;