Вертикальные углы находятся друг напротив друга, а рядом лежащие углы являются смежными, так как у них одна сторона общая, а не общие стороны лежат на одной прямой.
Равенство вертикальных углов является следствием определения смежных углов. Смежные углы по определению в сумме составляют 180°.
Возьмем любой угол, образованный двумя пересекающимися прямыми, обозначим его как ∠1 и примем его величину как a.
Тогда смежный ∠2 с ним будет равен 180° – a. Но у этого ∠2 с другой стороны есть другой смежный угол – ∠3. Его величина будет равна 180° минус величина ∠2. Но ∠2 у нас равен 180° – a, поэтому:
∠3 = 180° – ∠2 = 180° – (180° – a) = 180° – 180° + a = a
То есть ∠1 и ∠3 равны.
Можно продолжить и доказать, что ∠4 равен ∠2. Если ∠3 равен a, то ∠4, как смежный с ним, равен 180° – a.
На рисунке ниже доказательство выглядит несколько по-другому. ∠2 смежный и с ∠1, и с ∠3. Поскольку его величина постоянна, а сумма смежных углов равна 180°, то чтобы получить величину ∠2, надо из 180 вычитать одно и то же число, значит ∠1 = ∠3.

Объяснение:
1. a→=20⋅i→+13⋅j→? a→{20 ; 13 }. 2. b→=−25⋅j→+8⋅i→? b→{8 ; - 25}. 3. c→=−11⋅i→? c→{- 11 ; 0 }.
Для вектора на площині коефіцієнт перед одиничним вектором і→
осі Ох є першою координатою , а коефіцієнт перед одиничним вектором j→ осі Оу є другою координатою вектора :
а→ = а₁* i + a₂ * j , а→{ a₁ ; a₂ } .
Якщо якогось одиничного вектора немає в запису , тоді для нього
коефіцієнт дорівнює 0 .
1) Диагональ основания будет 5 см, т. к стороны - 3 см и 4 см ( египетский треугольник), то ребро параллелепипеда найдем по т. Пифагора корень из(144-25)= корень из 119 см.
2) Искомое сечение является диагональным сечением пирамиды и представляет собой равнобедренный треугольник со сторонами 6 см, 6 см. и 6 коренй из 2. Высота этого треугольника равна корень из ( 36-18)= корень из 18=3 корня из 2. Тогда S=1/2*6 корней из 2* 3 корня из 2=18 см ^2
3) Высота параллелепипеда 4 см( египетский треугольник), то S бок=4*4*3=48 см ^2