В произвольном четырехугольнике, диагонали которого перпендикулярны, последовательно соединили середины сторон.
а) докажите, что полученная фигура будет являться прямоугольником ( );
б) найдите периметр и площадь полученного прямоугольника, если диагонали исходного четырехугольника равны 5 см и 10 см ( ).
Расстояния от точки С до точек А и В равны.
Запишем это условие в виде равенства.
(6-0)²+(1-у)²+(0-0)² = (2-0)²+(5-у)²+(8-0)².
Раскроем скобки и приведём подобные:
36+1-2у+у² = 4+25-10у+у²+64,
8у = 93-37 =56,
у = 56/8 = 7.
Координаты точки С(0;7;0).
2) По координатам точек находим длины сторон треугольника и по формуле Герона находим его площадь.
АВ ВС АС Р р=Р/2
9,797959 8,4852814 8,48528 26,768522 13,3843,
S (ABC)= 33,941125.