1) Основание пирамиды - прямойг. треуг. АВС, угол В=90, АС=6см ВС=8см. По теореме Пифагора гипотенуза АС=10см. SH - высота пирамиды. Если около прямоуг. тр-ка описать окружность, то его гипотенуза является диаметром, а центр окружности лежит на середине гипотенузы, т.е. в точке Н. Следовательно, АН=ВН=СН как радиусы описанной окружности. Высота SH равна гипотенузе по условию, значит SH=10 см, АН=ВН=10/2=5см. Треуг-ки SHA=SHB=SHC по двум катетам, следовательно все боковые ребра пирамиды равны SA=SB=SC=√(100+25)=5√5cм
2) Если в прямоуг. треуг-ке один острый угол 45, то и второй 45. Треуг. равнобедренный. S(основания)=6*6/2=18см^2. Высота Н=V/S=108/18=6см. Гипотенуза треуг-ка в основании равна √(36+36)=6√2см.
Площадь полной поверхности призмы:
S=18*2+36*2+36√2=108+36√2(см^2)
а) АВ=1; б) AB_{1} =\sqrt{2}AB
1
; в) AC_{1}=\sqrt{3}AC
Объяснение:
В единичном кубе ABCDA₁B₁C₁D₁ (см. рисунок) все ребра равны 1, то есть
AB=AD=AA₁=B₁B=B₁A₁=B₁C₁=CB=CD=CC₁=D₁D=D₁A₁=D₁C₁=1.
Отсюда а) АВ=1.
Так как вершины ABB₁ образуют прямоугольный треугольник с прямым углом в вершине B, то по теореме Пифагора
AB₁²=AB²+BB₁²=1²+1²=1+1=2.
Отсюда б) AB_{1}=\sqrt{2}ABA
Теперь, вершины AB₁C₁ образуют прямоугольный треугольник с прямым углом в вершине B₁, то по теореме Пифагора