ответ: я точно не знаю, но если не правильно извините.
а)даны стороны треугольника ав и ас и угол между ними.
на произвольной прямой отложим отрезок, равный длине стороны ас, отметим на нём точки а и с.
из вершины а заданного угла проведем полуокружность произвольного радиуса и сделаем насечки м и к на его сторонах. ам=ак= радиусу проведенной окружности.
из т.а на отложенном отрезке тем же раствором циркуля проведем полуокружность. точку пересечения с ас обозначим к1.
от к1 циркулем проведем полуокружность радиусом, равным длине отрезка км, соединяющим стороны заданного угла.
эта полуокружность пересечется с первой. через точку пересечения проведем от т. а луч и отложим на нем отрезок, равный данной стороне ав, отметим точку в. соединим в и с.
искомый треугольник построен.
биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
из точек, взятых на сторонах угла на равном расстоянии от его вершины а ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. через точки их пересечения и а проводим луч. треугольник ам1к! - равнобедренный по построению, ае - перпендикулярен м1к1 и делит его пополам.
треугольники аем1 и аек1 равны по гипотенузе и общему катету. поэтому их углы при а равны. ае - биссектриса.
Допустим, что меньший из этих двух острых уголов =Х °.
Поскольку по условию задачи сказано, что один из острых углов на 50% больше второго, значит второй угол в 2 раза больше первого (поскольку 50% величины это половина от 100%) и этот второй острый угол =2Х°.
Сума всех углов любого треугольника =180°
Значит сума углов нашего треугольника =180°
Выходит,
х+2х+90°=180°
3х=180°-90°
3х=90°
х=30° - величина первого острого угла.
Значит величина второго острого угла = 2Х°=2*30°=60°
ответ: острые угли прямоугольного треугольника равны 30° и 60°