Амазонская низменность - самая обширная равнина в мире, занимающая площадь более 5 млн. км2. Она поднимается над уровнем моря на высоту 10—120 м. Всю поверхность равнины занимают экваториальные влажные леса — гилея. Огромные пространства низменности связаны с жизнью великой реки Амазонки, крупнейшей в мире по площади водосбора. Часть территории вблизи поймы реки постоянно подтапливается, образуя болотистые участки, так называемые марши, а вблизи устья реки на рельеф равнины оказывают влияние приливные волны Атлантического океана. С их действием связано удивительное явление «поророка» , когда во время прилива водяной вал океана поднимается настолько высоко, что заходит в устье Амазонки в виде большой волны, поворачивающей вспять воды реки.
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см. Построим отрезки ВМ и АН, которые пересекаются в точке К. ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см. Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные. Пусть НС=х, ВС=ВН+НС=7+х. ВС/МС=АС/НС, (7+х)/3=6/х, 7х+х²=18, х²+7х-18=0, х>0, значит х≠-9, х=2. НС=2 см, АВ=ВС=7+2=9 см - это ответ.
380-150*2=80 , 80/2=40 градусов меньший угол
S=49*sin40=49*0.642=31.45 см 2