Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
24 м
Объяснение:
В равностороннем треугольнике точка пересечения высот является и точкой пересечения медиан
Если провести медиану к стороне, параллельной проведенной прямой, то точка пересечения медиан поделит эту медиану в отношении 2:1
По теореме о пропорциональных отрезках точки пересечения проведенной прямой с двумя другими сторонами треугольника также делят эти стороны в отношении 2:1
Получаем, что отсеченный треугольник подобен исходному с коэффициентом 2/3, все его стороны в 1.5 раза меньше сторон исходного треугольника, значит, и периметр в 1.5 раза меньше
Поэтому периметр исходного треугольника 16*1.5 = 24 см