В параллелограмме противолежащие углы равны значит если < C = 30°, то < A тоже = 30°. Тогда в треугольнике ABH катет BH лежит против угла в 30°, значит катет BH равен половине гипотенузы AB, то есть гипотенуза AB в два раза больше BH. AB = 2 * BH = 2 * 6,5 = 13 см В параллелограмме противолежащие стороны равны, значит CD = AB = 13 Периметр это сумма длин всех сторон, значит P = AB + CD + AD + BC 50 = 13 + 13 + AD + BC AD + BC = 24 Но AD = BC значит каждая из них по 12 см ответ : стороны параллелограмма 13 см, 13см, 12см, 12см
Отрезки средней линии трапеции являются средними линиями треугольников АВС и АСD, так как эти отрезки проходят через середину боковой стороны параллельно основанию. По свойствам средней линии имеем: ВС=2*2=4 см, а АD=2*5=10 см. Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности. Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство). В прямоугольном треугольнике сумма острых углов равна 90°, значит <A=90°-30°=60°. Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°. Значит угол В=180°-60°=120°. Так как трапеция равнобедренная, углы при основаниях равны. ответ: <A=<D=60°, <B=<C=120°.
AB = 2 * BH = 2 * 6,5 = 13 см
В параллелограмме противолежащие стороны равны, значит
CD = AB = 13
Периметр это сумма длин всех сторон, значит
P = AB + CD + AD + BC
50 = 13 + 13 + AD + BC
AD + BC = 24
Но AD = BC значит каждая из них по 12 см
ответ : стороны параллелограмма 13 см, 13см, 12см, 12см