ответ:
v = 5√3/6 ед³.
sбок = 144 ед².
объяснение:
судя по тому, что ∠авс= 120°, параллелепипед не прямоугольный, а прямой. это "две большие разницы".
итак, высота параллелепипеда равна 9см, а в основании прямого параллелепипеда лежит параллелограмм со стороной вс = 5 см, диагональю ас=7см и углом авс = 120°. по теореме косинусов попробуем найти сторону ав.
ас² =ав²+вс² - 2·ав·вс·cos120. cos120 = -cos60 = - 1/2.
49 = ab²+25 - 2·ab·5·(-1/2) =>
ав²+5·ав -24 =0 => ab = 3cм
so = ab·bc·sin120 = 3·5·√3/2.
v = so·h = (3·5·√3/2)·9 = 5√3/6 ед³. (площадь основания, умноженная на высоту).
sбок = р·h = 2(3+5)·9 = 144 ед² ( периметр, умноженный на высоту)
32 см².
Объяснение:
1) Точка М является точкой пересечения продолжения боковых сторон трапеции AB и CD. Образовавшиеся при этом треугольники ВМС и АDM подобны, т.к. ВС║АD - как основания трапеции, а площадь трапеции ABCD, которую необходимо найти, равна разности площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС
2) Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Коэффициент подобия равен:
k = 3 : 5 = 0,6
Квадрат коэффициента подобия:
k = 0,6² = 0,36
3) Следовательно, площадь треугольника ВМС составляет 0,36 площади треугольника АDM и составляет:
SΔВМС = 50 · 0,36 = 18 см²
4) Находим площадь трапеции как разность площадей подобных треугольников:
S ABCD = S ΔADM - SΔВМС = 50 - 18 = 32 см².
ответ: 32 см².
56:9-%628:829
равное Н будет У ( игрик