Подобные задачи ("стороны или углы пропорциональны числам") решаются следующим образом: 1) Вводится переменная х, обозначающая одну часть (пишется "пусть х -одна часть") 2) Стороны треугольника записываются через эту переменную: 3х, 4х, 6х ( то есть в каждой стороне треугольника содержится столько-то этих частей) 3) Стороны складываются, образуя периметр. Получаем уравнение: 3х + 4х+ 6х = 39 13Х = 39 х =3 4) Нам нужна меньшая сторона, то есть та сторона, которая содержит меньше всего таких частей. Она равна 3х =3*3 =9
Найти углы 1 и 2, если m║n и ∠2 в четыре раза больше ∠1 ⇒
∠2 = 4∠1
∠1 и ∠2 - внутренние односторонние при m║n и секущей с ⇒
∠1 + ∠2 = 180°
∠1 + 4∠1 = 180°
5∠1 = 180° ⇒ ∠1 = 180°/5 = 36°
∠2 = 4*36° = 144°
∠1 = 36°; ∠2 = 144
Объяснение: