1—задача
O∈DE, DE||BC, DE - искомый отрезок
Радиус в точку касания перпендикулярен касательной.
Через точку можно провести только один перпендикуляр к прямой.
BC⊥AC => OE⊥AC => E - точка касания
△ADE~△ABC (по соответственным при DE||BC)
DE/BC =AE/AC => DE =3*3/4 =2,25 (см)
Объяснение:
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
bananchikY
18 часов назад
Геометрия5 - 9 классы
ответ дан
1) В равнобедренном треугольнике, точка пересечения медиан отдалена от основания на 2a. Найдите расстояние от середины боковой стороны до основания.
2) Две стороны равнобедренного треугольника равны 15 см и 40 см. Найдите стороны подобного к нему треугольника, если его периметр составляет 190 см.
3) В равнобокой трапеции диагонали являются биссектрисами тупых углов. Расстояния от точки пересечения диагоналей к основаниям трапеции равны 2,25 см и 9,75 см. Найдите периметр трапеции, если средняя линия равна 8 см.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
Реклама
ответ
0
ant20202020
главный мозг
11.4 тыс. ответов
42.2 млн пользователей, получивших
1. ответ 3а, во вложении пояснения.
2. стороны в 15 см не могут быть боковыми сторонами, иначе 15+15<40 не выполняется неравенство треугольника, и значит, основание 15, а две боковые стороны по 40 см,
периметр подобного исходного треугольника равен 40+40+15=95, а периметр подобного 190, что в 2 раза больше , значит, каждая сторона подобного в два раза больше исходного. и тогда его стороны 15*2=30/см/, а две другие стороны по 40*2=80 см.
ответ 30см, 80 см, 80 см.
3. ответ (16+16√3) смво вложении пояснения.
Определим величину угла СВА.
Угол СВА = 180 – АСВ – ВАС = 180 – 35 – 75 = 700.
Так как ВД, по условию, биссектриса угла АВС, то угол СВД = АВД = АВС / 2 = 70 / 2 = 350.
В треугольнике ВСД, угла при основании ВС равны 350, следовательно треугольник ВДС равнобедренный, а ДВ = ДС, что и требовалось доказать.
2).
Рассмотрим треугольники ВСД и АВД. В треугольнике АВД угол АДВ = 180 – 30 – 75 = 750.
Треугольники ВСД и АВД равнобедренные с одинаковыми сторонами. ВД = СД = ВД = ВА.
Сравним основания ВС и АД. Основание СД лежит против угла 750, а основание АД против угла 300, следовательно ВС > АД.
ответ: ВС > АД.