а) симметрии относительно прямой, проходящей через вершину С параллельно диагонали АС;
б) симметрии относительно точки, являющейся серединой стороны ВС;
в) параллельном переносе на вектор BE, где К ∈ BD и ВК : KD = 1 : 3;
г) повороте вокруг точки пересечения диагоналей на 120° по часовой стрелке.
Найдите уравнение кривой, из которой получена парабола у = х2 – 2х + 5 параллельным переносом на вектор ā {–1; 1}.
* Даны угол и точка внутри него. С циркуля и линейки постройте равносторонний треугольник, вершины которого лежат на сторонах угла, а одна из сторон проходит через данную точку
1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
Треугольник ABC; AB=9; BC=11; BO=7. АО=ОС(медиана делит основание на 2 равные части). Чтобы найти основание, мы продолжаем медиану на 7 см и ставим точку Д(ВО=ОД=7см); соединяем со всеми вершинами и получаем ромб/параллелограм. Параллелограм состоит из 4-её треугольников, попарно одинаковых; /\АВО=/\СОД(АО=ОС, ВО=ОД и вертикальные углы при точке О); ВД=7+7=14см Воспользуемся формулой Герона: S=\/p(p-a)(p-b)(p-c), где p=(a+b+c):2 Треугольник ВСД: P=(11+9+14):2=17см S=\/17*8**6*3= \/17*4*2*3*2*3=12\/17cm^2