М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
TheGreatHaterMisha
TheGreatHaterMisha
14.01.2023 22:08 •  Геометрия

3. ABCD napazzcz0XPAN
1С - биссектриса
DEя см – биіктік
IS 50​

👇
Открыть все ответы
Ответ:
Kris15kim
Kris15kim
14.01.2023

ответ: √(x² + y²)

Объяснение:

Расстояние между двумя точками -- это отрезок, соединяющий эти точки.

Воспользуемся формулой нахождения расстояния между двумя точками.

Пусть А(a₁; a₂), B(b₁, b₂), тогда

|\overrightarrow{AB}|=\sqrt{(b_1-a_1)^2+(b_2-a_2)^2}

В нашем случае даны точки O(0; 0) и M(x; y). Подставим их координаты в формулу:

OM=|\overrightarrow{OM}|=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}

Воспользуемся координатной плоскость и теоремой Пифагора.

Изобразим на координатной плоскости точки O(0; 0) и M(x; y). Соединим их. Затем опустим перпендикуляры от точки М на ось ОХ и OY, обозначим получившиеся точки N(x; 0) и K(0; y).

(координатная плоскость во вложениях)

Получаем следующее: длина отрезка OK равна y - 0 = y, ON = x.

Также MN = OK = y

Рассмотрим ΔMNO. Он прямоугольный. Применим к нему теорему Пифагора и выразим гипотенузу OM:

OM^2=ON^2+MN^2\\ \\ OM=\sqrt{ON^2+MN^2} =\sqrt{x^2+y^2}


Самостоятельно запиши формулу для нахождения расстояния от начала координат О(0;0) до точки М(х;у)
4,7(81 оценок)
Ответ:
MCЯнуля
MCЯнуля
14.01.2023

ответ: πa²

Объяснение: 1)Для нахождения радиуса описанной окружности трапеции делают дополнительные построения — строят диагональ трапеции  BD  и высоту ВМ. Теперь трапеция разбита на два треугольника ABD и BСD. Окружность при этом описана вокруг обоих этих треугольников. Далее по данным параметрам трапеции находим диагональ BD, высоту BM и по формуле вычисления радиуса описанной окружности около треугольника R=abc/4S ⇒ Трапеция ABCD у нас равнобокая, большее основание  АD =2а, меньшее ВС=а, боковые стороны АВ=СD=a      2) АМ= (2а-а)/2=а/2 ; MD= 2a - a/2= 3a/2       3) из ΔАВМ имеем: ВМ²=h²= a² - (a/2)²=3a²/4 ⇒ h=a√3/2     4) из ΔМВD имеем: BD²= BM²+MD²= 3a²/4+ 9a²/4 = 3a², ⇒ BD=a√3.        5) Площадь ΔABD равна S= 1/2·AD·BM/2 = 2a · a√3/4 = a²√3/2 ⇒ радиус окружности, описанной около ΔABD(а значит и трапеции) R=  abc/4S = AB·BD·AD /4S= (a·a√3·2a) / (4·a²√3/2) = a, т.е. R=a     6) Площадь круга S₁= π·R²=π·a²

4,4(43 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ