многоугольник ABCDE разделён на квадраты со стороной 1 см найдите площадь фигуры ABCDE 30см в кв(квадрате) 31см в кв 32 см в кв 31,5см в кв 27,5см в кв
Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
X,y - основания трапеции a - боковая сторона h - высота, h=4/5a 2a+x+y=64- периметр трапеции Рассм. треугольник, образованный высотой трапеции h, боковой стороной a: основание треугольника - (y-x)/2, тк по условию задачи, y-x=18, то основание треугольника равно 9. по теореме пифагора, 81=a*a+h*h 81=a*a+16/25a*a, отсюда получаем, что а=15. h=4/5*15=12 Из уравнения 2a+x+y=64 и y-x=18, находим, что основания трапеции х и у равны 8 и 26 соотвественно. Площадь трапеции равна полусумме оснований на высоту, т.е. 0,5*12*(8+26)=204
ответ: 31.5см^2