Нехай ми проведемо висоту, яка є медіаною. Тоді основа ділиться на дві різні частини, і утворюється два прямокутних трикутника. Нехай висота х (а), гіпотенуза с=17см, катет - b =х см
Поскольку в равнобедренном треугольнике АВС углы при основании ВС равны, то /_В = /_С, но это значит, что и внешние углы при вершинах В и С равны между собой: /_АВВ1 = /_АСС1 И половинки этих внешних углов, полученных при проведении биссектрис ВВ2 и СС2 также равны между собой /_В2ВВ1 = /_С2СС1. Биссектрисы В2В и С2С пересекаются в точке О. /_ ОВС = /_В1ВВ1 как вертикальные, и /_ОСС1 = /_С2СС! как вертикальные. Но поскольку /_В2ВВ1 = /_С2СС1, то и /ОВС = /_ОСВ, и треугольник ОВС - равнобедренный с основанием ВС. Следовательно, ОВ = ОС как боковые стороны равнобедренного тр-ка ОВС, что и требовалось доказать.
Поскольку в равнобедренном треугольнике АВС углы при основании ВС равны, то /_В = /_С, но это значит, что и внешние углы при вершинах В и С равны между собой: /_АВВ1 = /_АСС1 И половинки этих внешних углов, полученных при проведении биссектрис ВВ2 и СС2 также равны между собой /_В2ВВ1 = /_С2СС1. Биссектрисы В2В и С2С пересекаются в точке О. /_ ОВС = /_В1ВВ1 как вертикальные, и /_ОСС1 = /_С2СС! как вертикальные. Но поскольку /_В2ВВ1 = /_С2СС1, то и /ОВС = /_ОСВ, и треугольник ОВС - равнобедренный с основанием ВС. Следовательно, ОВ = ОС как боковые стороны равнобедренного тр-ка ОВС, что и требовалось доказать.
Объяснение:
Відповідь: 120 см²
Нехай ми проведемо висоту, яка є медіаною. Тоді основа ділиться на дві різні частини, і утворюється два прямокутних трикутника. Нехай висота х (а), гіпотенуза с=17см, катет - b =х см
Н2=с2-а2=17^2-8^2=289-64=225
Н=15 см
S=(16•15)+2=120см²