Есть пирамида АВСДА1В1С1Д1, где АВСД - нижнее основание, О - центр нижнего основания, т.Л - середина стороны СД. Аналогично назовем Л1 и О1 для верхнего основания А1В1С1Д1. Восстановим вершину усеченной пирамиды и назовем ее т.К.
Рассмотрим прямоугольный треугольник КЛО: т.к. КО - катет, лежащий против угла КЛО=30 градусов, то КЛ=2*КО. ОЛ=АД/2=24/2=12. Примем КО за х. Тогда КО^2+ОЛ^2=КЛ^2; х^2+12^2=(2х)^2; х=КО=4*корень из 3; КЛ=8*корень из 3.
Из подобия треугольников КЛО и КЛ1О1:
ОЛ/О1Л1=КО/КО1, отсюда КО1=О1Л1*КО/ОЛ=(20/2)*(4*корень из 3)/12=10/корень из 3
V усеч. = V(КАВСД) - V(КА1В1С1Д1)=S(АВСД)*КО/3- S(А1В1С1Д1)*КО1/3=
=24*24*4*(корень из 3)/3-20*20*(10/корень из 3)/3=2912/(3*корень из 3)
угол Б - 112 градусов, а по теореме о сумме углов в треугольнике мы знаем, что сумма углов равна 180 градусам, из чего следует, что углы
А+С=180-112=68 градусам
так как углы при основании равны, из этого следует, что А=С=68:2=34 градусам
углы в треугольнике найдены
Теперь найдем любой внешний угол, пусть это будет угол при основании АС угол БАК
ПО теореме о внешнем угле мы знаем,что внешний угол равен сумме двух других углов, не смежных с ним, из чего следует, что угол БАК=34+112=146 градусам