Отрезки касательных из точки вне окружности до точки касания с ней равны. Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. ВК и СМ - биссектрисы равных углов В и С соответственно. Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине. Аналогично СМ пересекает дугу ВС в ее середине. Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.
Пусть с 1уч-Хц со 2уч-Хц,тогда с 3уч-(Х+12)ц.Т.к. с трёх уч-ов 156ц,то составим ур-е: Х+Х+(Х+12)=156 3Х+12=156 3Х=156-12 3Х=144 Х=144:3 Х=48,тогда Х+12=48+12=60ответ: С первого и второго уч-ов собрали по 48ц, с третьего 60ц картофеля.
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ.
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.
Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.
ВК и СМ - биссектрисы равных углов В и С соответственно.
Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине.
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.