ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
tg a = 2/((d₁/d₂)-(d₂/d₁)) находим
tg a = 2/((2√3 /2)-(2/2√3)) = 2/(√3-1/√3)=
2/(√3-√3/3=2/(√3(1-1/3)= 2/(√3(2/3)=
2√3/2=√3
tg 60°=√3
углы ромба 60° и 120°
подробнее - на -
объяснение:
1. ∠ABD = ∠AMK как соответственные при пересечении параллельных прямых BD и МК,
∠А - общий для треугольников ABD и AMK, значит
Δ ABD подобен ΔAMK по двум углам.
AB : AM = BD : MK
AB : 32 = 4 : 8
AB = 32 · 4 / 8 = 16 см
2. ∠ОАВ = ∠ОМК как накрест лежащие при пересечении параллельных прямых АВ и МК,
∠О - общий для треугольников АОВ и МОК, значит
ΔАОВ подобен ΔМОК по двум углам.
АB : MK = AO : MO
AB : 10 = 8 : 20
AB = 10 · 8 / 20 = 4
3. AD : AB = 6 : 15 = 2 : 5
AK : AC = 8 : 20 = 2 : 5
∠A - общий для треугольников ADK и АВС, значит
ΔADK подобен ΔABC по двум пропорциональным сторонам и углу между ними.
DK : BC = AD : AB = 2 : 5
DK : 30 = 2 : 5
DK = 30 · 2 / 5 = 12 см
4. Площади подобных треугольников относятся, как квадрат коэффициента подобия:
k² = S₁ : S₂ = 64/81
k = √(64/81) = 8/9
a₁ : a₂ = 8 : 9
Из условия задачи не ясно, какому из треугольников принадлежит сторона, равная 8. Рассмотрим два случая:
1) a₁ = 8
8 : a₂ = 8 : 9
a₂ = 8 · 9 / 8 = 9
2) a₂ = 8
a₁ : 8 = 8 : 9
a₁ = 8 · 8 / 9 = 64/9 = 7_1/9