Дано:
треугольник ABC-равнобедренный.
периметр ABC=140дм.
AB=24дм.
Если треугольник ABC-равнобедренный, значит AC=BC=(140-24):2=58дм.
ответ: AC=BC=58дм
Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон треугольника называется коэффициентом подобия.
Через середину наибольшей стороны треугольника проведена прямая-зачит линия делит сторону пополам и k=1/2;
А). 6,7,8
Б). 6,7,9
В). 6,7,10.
Во всех трёх примерах наименьшая сторона равна 6,соотвественно-6/2=3
Поэтому решение одно во всех трёх случаях!
ответ: наименьшая сторона отсеченного треугольника равна 3(один ответ во всех трёх случаях).
Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон треугольника называется коэффициентом подобия.
Через середину наибольшей стороны треугольника проведена прямая-зачит линия делит сторону пополам и k=1/2;
А). 6,7,8
Б). 6,7,9
В). 6,7,10.
Во всех трёх примерах наименьшая сторона равна 6,соотвественно-6/2=3
Поэтому решение одно во всех трёх случаях!
ответ: наименьшая сторона отсеченного треугольника равна 3(один ответ во всех трёх случаях).
140-(24*2)=92
Это если сторона с 24 есть боковая.
(140-24):2=58
Это если сторона с 24 есть основой.