М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ivanvlasuyk80
ivanvlasuyk80
24.12.2020 09:59 •  Геометрия

На дiагоналi квадрата як на сторонi побудовано iнший квадрат. Доведiть, що його площа вдвiчi бiльша за площу даного квадрата


На дiагоналi квадрата як на сторонi побудовано iнший квадрат. Доведiть, що його площа вдвiчi бiльша

👇
Ответ:
akot2005
akot2005
24.12.2020

Площадь квадрата А1ВDC2 больше в 2 раза площади квадрата ABCD.

Объяснение:

Пусть сторона АВ будет а.

АВ=а

Диагональ квадрата будет

ВD=a√2 (диагональ квадрата и сторона большего квадрата)

Площадь квадрата ABCD

S(ABCD)=AB²=a²

Площадь квадрата А1ВDC1

S(A1BDC1)=BD²=(a√2)²=a²*2=2a²

2a²/a=2 раза площадь квадрата (А1ВDC1) больше площади квадрата (ABCD)

4,6(70 оценок)
Открыть все ответы
Ответ:
Zen201
Zen201
24.12.2020
Значит так. Чертим прямоугольный треугольник. 
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
 x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5
Впрямоугольном треугольнике abc с прямым углом c проведена высота ch. чему равен отрезок bh, если ac
4,6(37 оценок)
Ответ:
simpleam
simpleam
24.12.2020
Сечение конуса - ΔАВС с основанием АС=6√3 - хорда.
равнобедренный ΔАОС (О - центр основания конуса): АО=ОС=R, <AOC=120°, <OAC=<OCA=30°, OM_|_AC, ОМ - высота, медиана ΔАОС, ⇒АМ=3√3. 
tg30°=OM:AM. 

OM= \frac{1}{ \sqrt{3} } *3 \sqrt{3} , OM=3

cos30^{0} = \frac{AM}{OA}, \frac{ \sqrt{3} }{2} = \frac{OA}{3 \sqrt{3} } &#10;&#10;OA=4,5&#10;&#10;

по условию, секущая плоскость составляет с плоскостью основания угол 45°, ⇒ линейный угол ВАСМ - угол ВМО=45°. высота конуса Н=ОМ=3

V= \frac{1}{3}* \pi * R^{2}*H, V= \frac{1}{3} * \pi * 4,5^{2} *3&#10;&#10;V=20,25 \pi &#10; &#10;
ответ: Vк=20,25π

2. MABCD - правильная пирамида с диагональю основания АС=d, угол между боковым ребром МА и плоскостью основания <MAC= α 
MO_|_(MABCD), МО - высота пирамиды.
прямоугольный ΔМОА: ОА=d/2, <A=α. tgα=MO:OA, MO=tgα*OA
MO=d*tgα/2

Vпир=(1/3)*Sосн*H
Sосн=a², a- сторона основания пирамиды
диагональ пирамиды найдена по теореме Пифагора из ΔАВС: АС²=АВ²+АС²
АВ=АС=а
d²=a²+a², d²=2a². d=a√2, ⇒a=d/√2
S=(d/√2)²=d²/2
Vпир=(1/3)*(d²/2)*(d*tgα/2)
Vпир=(d³ *tgα)/12

Решить (с рисунком) 1)через вершину конуса проведена плоскость пересекающая окружность основания по
4,8(29 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ