1. Похила утворює з плошини кут 30 градусов. Знайти довжину похилої, якщо довжина перпендикуляра 7 см. Треуг - к прямоугольный, поэтому наклонная равна 7 * 2 = 14 см по свойс-ву катета против угла 30 град. 2. З точки до площини проведено похилі, довжини яких дорівнюють 13см і 15 см. Знайти довжину прекції другої похилої, якщо довжина проекції першої похилої 5см Якщо довжина проекції першої похилої 5см, а похила дорівнює13, Тоді перпендикуляр дорівнює за теоремою Пифагора 12 см. Розглядаючи другий трикутник за т. Піфагора проекція буде дорівнювати 9 см.
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.