Пусть серединные перпендикуляры MT и NT к сторонам AB и AC соответственно пересекаются в точке T, принадлежащей стороне BC. Проведём отрезок AT и рассмотрим треугольник ABT. В этом треугольнике TM является одновременно медианой и высотой, поскольку TM - серединный перпендикуляр к стороне AB треугольника. Так как TM одновременно является медианой и высотой, треугольник ABT равнобедренный с основанием AB, тогда углы ABT и BAT равны. Аналогично, рассмотрим треугольник ACT, в нём TN является одновременно медианой и высотой, поскольку TN - серединный перпендикуляр к стороне AC треугольника. Значит, треугольник ACT равнобедренный с основанием AC и углы ACT и CAT равны. Тогда угол A=BAC равен BAT+TAC=ABT+ACT=B+C, что и требовалось доказать.
В четырехугольнике MNPQ стороны MN и PQ параллельны. ∠ М ∠Р. Проведем прямую NQ. Она - секущая при параллельных MN и PQ. Из свойств углов при параллельных прямых и секущей накрестлежащие углы MNQ и PQN равны. В треугольниках MNQ и NPQ имеем по два равных угла. Следовательно, третий угол в них тоже равен. Сторона NQ в них общая. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Треугольники равны - и все соответственные стороны в них равны. Если противоположные стороны четырёхугольника попарно равны, то этот четырёхугольник — параллелограмм.
Ну соответственно начертим параллелограм,угол А=60,значит угол В=180-60=120 т.к. сумма углов при одной стороне 180 градусов. За расстояние между вершиной В принимаем перпендикуляр Р ,опущенный на биссектрису К угла С.Угол С=60,так как противоположные углы в параллелограмме равны.
Теперь рассмотрим треугольник ВРК(который прямоугольный(уголВРС=90гр),в этом треугольнике угол ВСР=30 т.к. его делит биссектриса.,а сторона лежащая против угла в 30 гр. равна половине гипотенузы т.е ВР=16:2=8
расстояние от В до биссектрисы =8
Аналогично с вершиной Д ,рассмотрим треугольник СРД ,,ДР =10:2=5 расстояние от Д до биссектрисы =5