Формула площади боковой поверхности конуса
Sбок = πRL
Sбок₁ = π·5·L
Sбок₂ = π·9·(L + 2)
По условию Sбок₂ - Sбок₂ = 70π
π·9·(L + 2) - π·5·L = 70π
9πL + 18π - 5πL = 70π
4πL = 52π
4L = 52
L₁ = L = 13(см) - длина образующей 1-го конуса
L₂ = L + 2 = 13 + 2 = 15(см) ) - длина образующей 2-го конуса
Найдём вымоты конусов
Н² = L² - R²
Н₁ = √(L₁² - R₁²) = √(13² - 5²) = √(169 - 25) = √144 = 12(cм)
Н₂ = √(L₂² - R₂²) = √(15² - 9²) = √(225 - 81) = √144 = 12(cм)
Формула объёма конуса:
V = 1/3 π·R²·H
V₁ = 1/3·π·25·12 = 100π(см²)
V₂ = 1/3·π·81·12 = 324π(см²)
Если Р - середина KN, то в треугольнике KEN EP - медиана, и (поскольку треугольник равнобедренный) одновременно - высота. Поэтому EP перпендикулярно KN. Но ЕР II MN. Поэтому MN перпендикулярно KN. Значит, KLMN - прямоугольник.
(Почему ЕР II MN? Ну, например, потому, что EMNP - тоже параллелограмм. Тут можно сослаться на пропорциональность отрезков LE, ЕМ и KP, PN и теорему о пропорциональных отрезках между параллельными линиями. Хотя вообще-то это очевидно, что линия, соединяющая середины противоположных сторон параллелограмма, параллельна сторонам. Можно и так - фигуры LEPK и EMNP накладываются друг на друга при параллельном переносе - при сдвиге на длину ЕМ вдоль LM, то есть они равны. Отсюда равны соответственные углы при прямых ЕР и MN и секущей LM. Как ни удивительно, это - строгое доказательство, потому что определение равенства фигур именно в этом и заключается - что они совпадают при каком-то переносе без деформации - или при зеркальном отражении).