Так як за умовою ∠ABK = ∠CDM, кут суміжний з ∠ABK це ∠ABM;
кут суміжний з ∠CDM це ∠CDK , а так як ∠ABK = ∠CDM за умовою, то кути суміжні з цими кутами рівні, отже ∠ABM = ∠CDK.Трикутник ΔABD = ΔCDB так як AB = CD - за умовою, ∠ABM = ∠CDK, BD - спільна сторона трикутників.З рівності ΔABD = ΔCDB, слідує, що відповідні елементи трикутників рівні, отже ∠BDA = ∠CBD.За теоремою трикутник є рівнобедренним якщо два його кути є рівними між собою отже ΔBOD - рівнобедренний так як ∠BDA = ∠CBD.
Трикутник ΔAOB = ΔCOD за другою ознакою рівності трикутників так як AB = CD за умовою; ∠ABD = ∠BDC з рівності трикутника ΔABD = ΔCDB, а AO = OC = AD - OD = BC - OD(Так як ΔBOD - рівнобедренний,AD = CB з рівності трикутника ΔABD = ΔCDB ).
Решение.
1) Проведем луч АХ, не лежащий на прямой АВ, и на нем от точки А отложим последовательно 5 равных отрезков АА1, А1А2, А2А3, А3А4, А4А5 т. е. столько
равных отрезков, на сколько равных частей нужно разделить данный отрезок А В.
2) Проведем прямую А5В и построим прямые, проходящие через точки А4, А3, А2, А1 и параллельные прямой А5В.
3) Эти прямые пересекают отрезок АВ в точках, которые по теореме Фалеса делят отрезок АВ на 5 равных частей.
д
Объяснение:
Дано: отрезок АВ.
Разделить отрезок на 5 равных частей.