Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение:
Один из углов равнобедренной трапеции равен 150°. Вычисли площадь трапеции, если её меньшее основание равно 13 см , а боковая сторона равна 40√3 см.
Дано:
ABCD _равнобедренная трапеция
AD || BC ;
∠ABC =∠DCB =150° ;
AD > BC = 13 см ;
AB = DC =40√3 см,
S = S(ABCD) -?
ответ: площадь трапеции равно 1260√3 см² .
Объяснение: AD || BC ( AD |и BC основания трапеции ABCD ) , поэтому ∠A+∠ABC =180°
∠A = 180° -∠ABC =180° -150° =30°.
[ Сумма внутренних односторонних углов при параллельных прямых и секущей равна 180°. ]
Проведем BE ⊥ AD и CF ⊥ AD . Получается прямоугольник BEFC , еще два треугольникa ABE и DCF .
Рассмотрим ΔABE :
BE =AB/2 как катет против угла A=30°; BE =AB/2 = 20√3 (см)
По теореме Пифагора : AЕ =√(AB²- BE²)
AЕ =√( (40√3)² - (20√3)² ) =√( (20√3)² (4 - 1) ) =20√3 *√3 =20*3 =60 (см)
ΔABE = ΔDCF по катету и гипотенузе ( BE = CF и AB =DC )
[ Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны. ]
⇒ AE =DF =60 см
S =0,5(AD +BC) *BE =0,5(AE +EF +FD +BC) *BE =
= 0,5(AE +EF +FD +BC) *BE =0,5(2AE +2BC) *BE = (AE+BC)*BE =
=(60 +13)*20√3 =73*20√3 = 1460√3 (cм²) .
Удачи !
это прямоугольник, но с квадратом все так же решается))