Точка А переходит в точку С по одной окружности, а точка В в точку Д по другой окружности, но чтобы это происходило одновременно, то есть отрезок АВ переходил в СД, окружности должны быть концентрическими (иметь общий центр). Точки А и С лежат на одной окружности, значит АС - её хорда. Одновременно ВД - хорда другой окружности. Из школьного курса известно, что диаметр, проведённый к хорде, делит её пополам, обратным следствием чего является то, что срединный перпендикуляр, восстановленный к хорде, проходит через центр окружности. Восстановив срединные перпендикуляры к хордам АС и ВД получим точку их пересечения. Это и будет центр двух окружностей или центр поворота.
PS Надеюсь как построить срединный перпендикуляр расписывать не нужно.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Точки А и С лежат на одной окружности, значит АС - её хорда. Одновременно ВД - хорда другой окружности.
Из школьного курса известно, что диаметр, проведённый к хорде, делит её пополам, обратным следствием чего является то, что срединный перпендикуляр, восстановленный к хорде, проходит через центр окружности.
Восстановив срединные перпендикуляры к хордам АС и ВД получим точку их пересечения. Это и будет центр двух окружностей или центр поворота.
PS Надеюсь как построить срединный перпендикуляр расписывать не нужно.