Все углы четырехугольника МКНС, вписанного в прямоугольный треугольник АВС – прямые, две стороны равны по условию, две другие им параллельны и противолежат, поэтому он – квадрат.
Его диагональ СМ для прямого угла С является биссектрисой.
Биссектриса угла треугольника делит противолежащую этому угла сторону на отрезки, пропорциональные прилежащим сторонам. ⇒
ВС:АС=ВК:АК.
Обозначим АС=х, ВС=у. ⇒
у:х=30:40 ⇒ у:х=3:4 ⇒
у=3х/4
АВ=30+40=7•10
По т.Пифагора
АВ²=АС²+ВС²=х²+у² Заменим у на его значение, выраженное через х:
7²•10²=х²+ 9х²/16
7²•10²=25x²/16
25x²=49•100•16
x²=49•4•16 ⇒x=7•2•4=56 см – длина АС
ВС=3•56/4=42 см
7х = 7·0,5 = 3,5 см; 6х = 6·0,5 = 3 см; 3х = 3·0,5 = 1,5 см
Відповідь: 3,5см, 3 см, 1,5 см.
2. Знайдемо одну частину 6 : 3 = 2 см, тоді 7·2 = 14 см, 6·2 = 12 см.
Відповідь: 14 см, 12 см, 6 см.
3. Знайдемо одну частину 28 : 7 = 4 (см), тоді 6·4 = 24 см, 3·4 = 12 см
Відповідь: 28 см, 24 см, 12 см.
4. Різниця двох сторін складає 7 - 3 = 4 частини, що становить 20 см, тоді одна частина 20 : 4 = 5(см), Маємо 7·5 = 35 см, 6·5 = 30 см, 3·5 = 15 см
Відповідь: 35 см, 30 см,15 см.