Основа рівнобедреного трикутника дорівнює 10, а бічна сторона – 13. Знайдіть тангенс кута між бічною стороною трикутника і висотою, проведеною до його основи.
Для решения нужно вспомнить. что: Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Поэтому h²=9·16=144 h=12 Из треугольников. на которые высота поделила искходный треугольник, по теореме Пиагора найдем катеты: 1)9²+12²=225 √225=15 2)16²+12²=400 √400=20 Катеты равны 15см и 20 см, гипотенуза 9+16=25 см
Можно применить для решения другую теорему. Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Найдем гипотенузу: 9+16=25 см Пусть меньший катет будет х. Тогда его проекция - 9см: х²= 9·25=225 х=15 см Больший катет пусть будет у: у²=25·16=400 у=20 см
1)AB=BC т.к. треугольник равнобедренный AD=DC т.к. в равнобедренном треугольнике высота это ещё и медиана, а медиана делит основание на 2 равные части ответ: по катету и гипотенузе 2)∠BAD=∠BCD т.к. треугольник равнобедренный AB=BC т.к. треугольник равнобедренный ответ по острому углу и гипотенузе 3)∠BAD=∠BCD т.к. треугольник равнобедренный AD=DC т.к. в равнобедренном треугольнике высота ещё и медиана, а медиана делит основание на 2 равные части ответ по катету и острому углу 4)сторона BD общая AD=DC т.к. в равнобедренном треугольнике высота ещё и медиана, а медиана делит основание на 2 равные части ответ по 2-м катетам
Відповідь:tg кутаАВН = АН/ВН =5/12=0,4167
Пояснення:Трикутник АВС, АВ=ВС=13, АС=10
Проводим висоту=медіані= бісектрисі ВН на АС, АН=СН = 1/2АС= 5, трикутник АВН прямокутний.
ВН = корінь (АВ в квадраті - АН в квадраті)=корінь (169-25)=12