Задание 2. а)Угол КАВ, образованный касательной АК и хордой АВ, проходящей через точку касания А, равен половине величины дуги АВ, заключённой между его сторонами, центральный угол АОВ тоже опирается на дугу АВ, а угол АСВ- вписанный угол, опирающийся на дугу АВ, поэтому равен половине величины центрального угла.
б)Т.о., углы АСВ и КАВ равны. А т.к. АК и КВ - отрезки касательных, проведенных из одной точки к одной окружности, то АК=КВ, т.е. ΔКАВ- равнобедренный.
в) т.к. по условию АС║КВ, то по свойству внутренних накрест лежащих при указанных параллельных прямых и секущей АВ ∠АВК=∠ВАС. значит, по двум углам треугольники КАВ и АСВ подобны, значит, сходственные стороны у них пропорциональны. АВ/ВС=АК/АС=к- коэффициент пропорциональности , Площадь треугольника АВС равна ВС*АС*sin∠ACB; площадь треугольника КАВ равна
АК*АВ*sin∠КАВ. Синусы равных углов равны. Отношение площадей (АК*АВ*sin∠КАВ)/(BC*АС*sin∠ACB)=АК*АВ/ВС*АС=к²; получается, что от угла не зависит отношение. Это для любого треугольника, а если к тому же треугольник АВС равнобедренный с основанием АВ, то все углы в нем по 60°, т.е. он получается равносторонним. т.е. угол и выбирать не надо по этому условию он уже определен. А из того, что угол равен 60°, следует равенство данных треугольников, значит, отношение их площадей равно единице.
Объяснение:
1.
Примечание:
Рисунок отличается от рисунка в условии. Следует понимать, что .
Дано: ΔABC - равносторонний, CM = MA,AK = BK, BN = CN,
Найти: - ?
Решение: Так как по условию треугольник ΔABC - равносторонний, то все его стороны равны, то есть AB = BC = AC, следовательно
CM = MA = AK = BK = BN = CN. По свойствам равностороннего треугольника (ΔABC) все его углы равны 60°, тогда ∠ACB = ∠CAB =
= ∠CBA = 60°. Треугольник ΔMAK = ΔBKN по первому признаку равенства треугольников, так как MA = KA = KB = BN и ∠CAB = ∠CBA = 60°. Так как по условию M,N - середины сторон CA,CB, то отрезок MN - средняя линия, тогда по теореме средняя линия параллельна стороне с которой не имеет общих точек, то есть MN║AB. Так как по условию K,N - середины сторон AB,CB, то отрезок KN - средняя линия, тогда по теореме средняя линия параллельна стороне с которой не имеет общих точек, то есть KN║AC. По теореме AMNK - параллелограмм, так как MN║AB и KN║AC, следовательно по свойствам параллелограмма его противоположные стороны равны, тогда MN = AK, MA = KN. Треугольник ΔMAK = ΔMKN по третьему признаку равенства треугольников, так как MK - общая, а MN = KA, AM = KN - как противоположные стороны параллелограмма AMNK. Так как треугольник ΔMAK = ΔMKN и треугольник ΔMAK = ΔBKN, то
ΔMAK = ΔMKN = ΔBKN. Так как треугольники равны, то их соответствующие элементы равны, то есть так как , то
квадратных единиц.
квадратных единиц.
2.
Если в комнате можно разместить все ковры, то сумма площадей ковров должна быть меньше или равна площади комнаты.
15 м² ∨ 4 м² + 5 м² + 7 м²
15 м² ∨ 16 м²
15 м² < 16 м²
Так как площадь, ковров больше площади комнаты, то ковры перекроются.