Так как биссектриса острого угла A прямоугольного треугольника ABC не может быть перпендикулярна BC, то биссектриса угла A и серединный перпендикуляр к BC имеют ровно одну общую точку.
Пусть N — середина BC. Рассмотрим окружность, описанную около треугольника ABC. Пусть серединный перпендикуляр к BC пересекает меньшую дугу BC в точке L (см. рисунок), тогда точка L является серединой этой дуги, ⌣BL = ⌣LC. Но тогда \angle BAL= \angle CAL как вписанные углы, опирающиеся на равные дуги, а отсюда AL — биссектриса \angle BAC. Но это означает, что точка L совпадает с точкой K, то есть с точкой пересечения серединного перпендикуляра к BC и биссектрисой \angle BAC. Заметим, что \angle BCL= \angle CBL как вписанные углы, опирающиеся на равные дуги.
Пусть \angle BCL= x. Четырехугольник ACLB — вписанный, поэтому \angle ACL плюс \angle ABL = 180 в степени circ, то есть 40 в степени circ плюс x плюс 90 в степени circ плюс x = 180 в степени circ , откуда x = 25 в степени circ. Так как точки K и L совпадают, \angle BCK = \angle BCL = 25 в степени circ.
ответ: 25°.
Раздел кодификатора ФИПИ: Углы в окружностях
тебе нужно просто расставить буквы к данной функции.
1. с (применяется правило синуса. противоположный катет к гипотенузе)
2. а (правило косинуса. прилежащий катет к гипотенузе)
3. а (правило синуса)
4. с (правило косинуса)
5. не возможно найти (так как правило противолежащий катет к прилежащему катету, а у нас отношения такого не дано.)
6. в (правило котангенса. прилежащий катет к противолежащему катету )
7.в (правило тангенса. противолежащий катет к прилежащему катету)
8.не возможно найти (так как по правилу прилежащий катет к противолежащему катету, а нам отношение не дано)
вот и все. не забудь построить прямоугольный треугольник и правильно указать буквы.