Следовательно, данный треугольник - прямоугольный.
Меньшая сторона лежит против угла 30° и равна половине гипотенузы (гипотенуза, как большая сторона равна 8 см). Меньшая сторона равна 4 см.
Медиана, проведенная к гипотенузе, равна ее половине, т.е. 4 см.
Меньшая сторона + медиана, провед. к гипотенузе = 4+4 = 8 (см)
ответ. 8 см.
5. Так как треугольник равнобедренный, то высота, проведенная к основе (в данной задаче - это гипотенуза), является и медианой. А медиана, проведенная к гипотенузе, равна ее половине. Значит, гипотенуза равна двум медианам.
Правильная призма — это прямая призма, основанием которой является правильный многоугольник, в случае правильной четырехугольной призмы - основанием призмы является квадрат. Правильная четырехугольная призма - прямоугольный параллелепипед. Пусть данная призма - АВСДА₁В₁С₁Д₁ Сделаем рисунок. (Во втором рисунке призма «уложена" на боковую грань для большей наглядности. ) Решение. АВ ⊥ ВС1 (если прямая перпендикуляра плоскости, она перпендикулярна любой прямой на этой плоскости). Диагональ АС₁ - гипотенуза прямоугольного треугольника АВС₁ Тогда АВ, сторона основания, противолежащая углу 30º, равна половине АС₁ АВ=ВС=СД=ДА=2 Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. D²=а²+b²+c²16=2²+2²+h²⇒ h²=16-8=8 h=√8=2√2 Площадь боковой поверхности призмы равна произведению периметра ее основания на высоту. Р=4*2=8 см Ѕ бок=8*2√2=16√2 см² -------------. Высоту призмы можно найти иначе. а) Сначала найдем диагональ ВС₁ боковой грани- она равна АС₁·cos 30°=(4 √3):2=2 √3 Высоту h трапеции найдем по т. Пифагора из треугольника ВСС₁ h² =(2 √3)²+2²=12-4=8 h=2√2 ------- б) Тот же результат получим, найдя по т. Пифагора из треугольника АВС₁ диагональ ВС₁ боковой грани, затем из прямоугольного треугольника ВСС₁ высоту призмы СС₁.
1. 4х+х=150
5х=150
х=30
ответ. 30°
2. х+х+2х=180
4х=180
х=45
ответ. 45°
3. 2х+3х=90
5х=90
х=18
3х-2х=х - разность.
ответ. 18°
4. Находим углы.
х+2х+3х=180
6х=180
х=30
30°,60°,90°.
Следовательно, данный треугольник - прямоугольный.
Меньшая сторона лежит против угла 30° и равна половине гипотенузы (гипотенуза, как большая сторона равна 8 см). Меньшая сторона равна 4 см.
Медиана, проведенная к гипотенузе, равна ее половине, т.е. 4 см.
Меньшая сторона + медиана, провед. к гипотенузе = 4+4 = 8 (см)
ответ. 8 см.
5. Так как треугольник равнобедренный, то высота, проведенная к основе (в данной задаче - это гипотенуза), является и медианой. А медиана, проведенная к гипотенузе, равна ее половине. Значит, гипотенуза равна двум медианам.
6·2=12 (см)
ответ. 12 см.