Полная поверхность усеченного конуса складывается из площадей оснований и из боковой поверхности конуса. Площади основания - это площади кругов соответствующих радиусов, т.е. πr² и πR². Их сумма - π(R²+r²).
Площадь боковой поверхности усеченного конуса есть разность боковых площадей полных конусов, построенных на большем и меньшем основаниях. Площадь боковой поверхности полного конуса равна πRL, где R - радиус основания, а L - длина образующей.
Достроим усеченный конус до полного. Т.к. основания параллельны друг другу, то углы между образующей и каждым из основанием равны. Длина образующей каждого из конусов определяется из соответствующего прямоугольного треугольника и равна радиусу основания, деленного на косинус угла между образующей и основанием.
L=R/cosα; l=r/cosα - длины образующих для большего и меньшего оснований соответственно.
Боковая поверхность большего конуса равна πRL=πR(R/cosα)=πR²/cosα. Аналогично, боковая поверхность меньшего конуса равна πr²/cosα.
Значит, площадь боковой поверхности усеченного конуса равна их разности, т.е. πR²/cosα-πr²/cosα=π(R²-r²)/cosα.
Т.о., площади полной поверхности равна π(R²+r²)+π(R²-r²)/cosα.
1) опускаем сторону к основанию - падает в середину, получается 2 одинаковых прямоуг. треуг, по т-ме Пифагора высота = (под корнем) 100 - 36 = 8 S = 1/2*12*8=48 (см кв.)
2) опускаем высоту из вершины с углом 150гр., получается прямоуг. треуг. с углом в 150-90=60 град., 12 - гипотенуза, то т.к. высота лежит напротив угла в 30град, она будет равна половине гипотенузы = 6, Отсюда S= 16*6 = 96. То же самое, если поменять стороны местами (высота = 16/2 = 8, а S = 12*8 = 96 см.кв.)
3) Аналогично опускаем высоты на большее основание, получаем прямоуг. со сторонами 10, h, 10, h Основание поделено 5:10:5, Отсюда высота = 169 - 25(корень) = 12 S треуг. = 2*1/2*5*12 = 60 S прямоуг.= 10*12=120 S трап.= 60 + 120 = 180
ответ: 10см.
Объяснение: АС=АВ/sin∠В;
∠В=180-150=30°;
sin30°=0,5;
АС=5/0,5=10см.