Точки X и Y лежат в плоскости α, а точка Z не находится в этой плоскости. Через серединные точки отрезков XZ и YZ проведена прямая b. Докажи, что эта прямая параллельна плоскости α.
(Дополни доказательство правильными словами или выражениями из списка.)
1. Если точки A и B — середины отрезков XZ и YZ, то отрезок AB
средняя линия треугольника
.
2. Как известно,
средняя линия треугольника
параллельна
третьей стороне треугольника.
3. Если прямая
параллельна
прямой, лежащей в некоторой плоскости, то она параллельна этой плоскости.
4. Значит, прямая b, на которой находится
средняя линия треугольника
,
параллельна
плоскости α, в которой лежит третья сторона треугольника.
Б)6 см
Объяснение:
Введемо коефіціент пропорційності x, тоді сторони трикутника a = 3x,
b = 5x, c = 7x.
P трикутника = a + b + c;
60 = 3x + 5x + 7x
60 = 15x
x = 4; a = 3x = 3 * 4 = 12 см.
Точки які є серединами сторін трикутника за означенням це середня лінія, а за умовою треба найти середню лінію з найменшою довжиною, тобто ця середня лінія лежить проти сторони з найменьшою довжиною. За властивістю середньої лінії середня лінія це половина сторони з якої вона немає спільних точок.
Тобто середня лінія m = a / 2 = 12 / 2 = 6 см