На координатной прямой расстояние между точками всегда является положительным числом и равняется модулю разности координат конца и начала отрезка, заданного этими точками. Так, расстояние между точками А (а) и B (b) составляет
АВ = |b - а|.
Таким образом, расстояние между заданными по условию точками А и В:
а) при а = 2, b = 8
АВ = |8 - 2| = 6;
б) при а = -3, b = -5
АВ = |-5 - (-3)| = |-2| =2;
в) при а = -1, b = 6
АВ = |6 - (-1)| = 7.
ответ: расстояние между точками А и B равно: а) 6; б) 2; в) 7
В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
На координатной прямой расстояние между точками всегда является положительным числом и равняется модулю разности координат конца и начала отрезка, заданного этими точками. Так, расстояние между точками А (а) и B (b) составляет
АВ = |b - а|.
Таким образом, расстояние между заданными по условию точками А и В:
а) при а = 2, b = 8
АВ = |8 - 2| = 6;
б) при а = -3, b = -5
АВ = |-5 - (-3)| = |-2| =2;
в) при а = -1, b = 6
АВ = |6 - (-1)| = 7.
ответ: расстояние между точками А и B равно: а) 6; б) 2; в) 7
Объяснение:
сори если что-то не правильно