Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
пусть дана трапеция ABCD с равными боковыми сторонами AD = BC. сумма ее оснований AB + DC = 17 см, высота AH = 3,5 см
угол ADH = 45 градусам по условию, угол AHD = 90 градусов, так как AH - высота = >
угол DAH = 180 - 90 - 45 = 45 градусов => треугольник AHD - равнобедренный, DH = AH = 3,5 см.
проведем еще одну высоту BL.
угол BCL = 45 градусам по условию, угол BLC = 90 градусов, так как BL - высота =>
угол LBC = 180 - 90 - 45 = 45 градусов => треугольник BCL - равнобедренный, LC = BL = 3,5 см
AB || DC, AH || BL = > ABLH - паралеллограмм => AB = HL
пусть AB = HL = x. тогда:
AB + DC = AB + DH + HL + LC = 2x + 7 = 17
2x = 10
x = 5
AB = 5 см.
DC = DH + HL + LC = 3,5 + 5 + 3,5 = 12 см.
ответ: AB = 5 см; DC = 12 см