Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
1) Розглянемо трикутник ВОС:
ОВ = ОС = R (радіуси) => трикутник BOC - рівнобедрений => кут АВС = кут ОСВ = 46° => кут СОВ = 180° - (кут АВС + кут ОСВ) = 180° - (46° + 46°) = 180° - 92° = 88° (за теоремою про суму кутів трикутника)
2) Розглянемо трикутник АОС:
кут АОС = 180° - кут СОВ = 180° - 88° = 92° (як суміжні кути)
ОА = ОС = R (радіуси) => трикутник АОС - рівнобедрений => кут ОАС = кут АСО
Нехай кут ОАС = кут АСО = х
За теоремою про суму кутів трикутника маємо рівняння:
х + х + 92° = 180°
2х = 88° /:2
х = 44°
Відповідь: кут АСО = 44°
(У ФАЙЛІ ПРИКРІПИВ МАЛЮНОК ДО ЗАДАЧІ)