Итак, у нас есть 2 высоты и диагональ. Эти 2 высоты разделили основание на 3 части по 40см , 16 и 40 см. Т.к трапеция р\б, треугольники ,что образованы высотами - равны , след. их стороны равны. средний отрезок равен 16 , т.к 1) у нас получился прямоугольник и напротив данного отрезка лежит меньшее основание , равное 16 см. рассмотрим "правый" треугольник :(если что , у меня диагональ идет с левого нижнего угла к правому верхнему) нам известно 2 стороны его - первая дана в условии - она равна 58 см, вторая = 40 см.Этот треугольник прямоугольный , следовательно высоту мы можем найти по теореме Пифагора = 3364-1600=1764. Корень = 42. Теперь рассмотрим треугольник , гипотенузой которой является наша диагональ. Один катет нам известен - только что его нашли. Второй найти тоже не проблема - 1 отрезок равен 40 см , второй - 16. значит катет равен 56 см . Опять теорема Пифагора = 56*56+42*42= 4900, корень равен 70 см.Вот мы и нашли диагональ
А и b - основания, a>b, h и с - боковые стороны, h<c, R=9, S=432. b=?
Высота трапеции равна диаметру окружности. h=2R=18. Площадь трапеции S=h(a+b)/2 ⇒ (a+b)=2S/h=2·432/18=48. B описанной трапеции h+с=a+b ⇒ с=a+b-c=48-18=30. Опустим высоту на большее основание из тупого угла трапеции. Она разбивает это основание на два отрезка, один из которых равен меньшему основанию, а другой (х) образует прямоугольный треугольник вместе с наклонной боковой стороной и высотой. х²=с²-h²=30²-18²=576, x=24. a=b+x=b+24.