21
Объяснение:
Проведём высоту BH. Средняя линия равна полусумме оснований: MN= дробь, числитель — AD плюс BC, знаменатель — 2 =5. Площадь трапеции равна произведению полусуммы оснований на высоту:
S_{ABCD}= дробь, числитель — AD плюс BC, знаменатель — 2 умножить на BH равносильно BH= дробь, числитель — 2S_{ABCD}, знаменатель — AD плюс BC равносильно BH=14.
Поскольку MN — средняя линия, MN\parallel AD, поэтому BK\perp KN. Отрезки AM и MB равны, AD\parallel MN\parallel BC, по теореме Фаллеса получаем, что BK=KH= дробь, числитель — BH, знаменатель — 2 =7. Найдём площадь трапеции BCNM:
S_{BCNM}= дробь, числитель — BC плюс MN, знаменатель — 2 умножить на BK= дробь, числитель — 1 плюс 5, знаменатель — 2 умножить на 7=21.
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
1) (OA) ⃗+ (OC) ⃗ =2*(OF) ⃗ и (OB) ⃗+(OD) ⃗ = 2*(OF) ⃗
значит (OA) ⃗+ (OC) ⃗ = (OB) ⃗+(OD) ⃗
2) (1/4) * [ (OA) ⃗+(OB) ⃗+ (OC) ⃗+(OD) ⃗] =
(1/4) * [ (OA) ⃗+ (OC) ⃗+(OB) ⃗+(OD) ⃗] =
(1/4) * [ 2*(OF) ⃗+2*(OF) ] =
(1/4) * 4*(OF) ⃗ = (OF) ⃗ .
Отсюда, тр.ВСК равен тр.CDM, угол ВСК = угол МСD = (90° - 50°)/2 = 20°