1) Секущая плоскость пересекает параллельные грани по параллельным прямым. Она пересекает грань ВВ₁С₁С по прямой ВС. Так как точка А₁ принадлежит сечению, то секущая плоскость пересекает грань АА₁D₁D по прямой A₁D₁ (BC║A₁D₁).
A₁D₁CB - искомое сечение.
Расположение точки М не дано. Возьмем точку на ребре АА₁.
По признаку параллельности плоскостей, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.
Проведем в грани АА₁В₁В отрезок MF║А₁В, в грани AA₁D₁D отрезок МЕ║A₁D₁.
Плоскость грани АВСD пересекает параллельные плоскости (желтую и голубую) по параллельным прямым, поэтому в грани АВСD проводим отрезок FK║BC. Соединяем точки Е и К.
MEKF - искомое сечение.
2) В задании пунктов а) и в) точка М расположена одинаково. В пункте а) не сказано, как проходит сечение, а через одну точку можно провести бесконечно много сечений. Поэтому эти пункты объединим, стоим сечение тетраэдра плоскостью, проходящей через точку М, параллельно прямым АС и BD.
а) и в) Проведем в грани ACD МК║АС, а в грани BCD МР║BD.
МР║BD, а значит и плоскости ABD. Сечение проходит через МР и пересекает ABD, значит линия пересечения параллельна BD. Проводим КЕ║BD.
МК║АС, а значит и плоскости АВС. Сечение проходит через МК и пересекает АВС, значит линия пересечения параллельна АС. Значит получилось, что ЕР║АС.
МКЕР - искомое сечение. Имеет вид параллелограмма, так как противоположные стороны параллельны (МК и РЕ параллельны АС, значит МК║РЕ, КЕ и МР параллельны BD, значит КЕ║МР).
Сечение может быть ромбом, если речь идет о правильном тетраэдре и точка М будет серединой стороны CD. Тогда все стороны сечения будут средними линиями граней тетраэдра и будут равны.
б) Соединим точки, находящиеся в одной грани: М и N, N и К.
Прямая MN лежит в грани BCD, эта грань пересекает плоскость грани ABD по прямой BD. Продлим MN до пересечения с прямой BD (точка Р).
Теперь точки Р и К лежат в плоскости одной грани ABD; проводим прямую РК. Она пересечет ребро AD в точке Т.
Соединяем М и Т.
МNKT - искомое сечение.
60 градусов каждый угол треугольника АВД
Объяснение:
1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)