Сказка о треугольниках Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры Меня знает каждый школьник, И зовусь я треугольник. У меня вершины три, Также три и стороны. Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным. Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить. Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам! Все также скачет по углам Веселая, смешная крыса. Мы делим радость пополам, А делит угол биссектриса. Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы: -если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны; - если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны; - если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны. Много времени проводят вместе друзья и встречают новых измени немного текст под себя
По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н. КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°. ответ: 127°
Жила на свете важная геометрическая фигура. Важность её признавалась всеми людьми, ибо при изготовлении многих вещей форма её служила образцом. Любимая песенка этой чудо фигуры
Меня знает каждый школьник,
И зовусь я треугольник.
У меня вершины три,
Также три и стороны.
Два угла при основании мои равны и боковые стороны одинаковые, думал треугольник и решил назвать себя равнобедренным.
Скучно было равнобедренному треугольнику одному, отправился он искать друзей. Встречает как-то фигуру: стороны три и угла три. Вот только один угол прямой! Ура! Это прямоугольный треугольник! Стали они дружить.
Вместе трудиться, вместе веселиться. Как – то встретили отрезок и решили поэкспериментировать: приложили его одним концом к вершине, а другим к середине противоположной стороны. Красота, это будет МЕДИАНА! Попробуем ещё – поделим угол пополам!
Все также скачет по углам
Веселая, смешная крыса.
Мы делим радость пополам,
А делит угол биссектриса.
Вот так они проводили досуг. Однажды гуляя по лесу, встретили очень похожую парочку. Познакомились и стали играть в сравнение. Прижался равнобедренный треугольник к похожему на себя и все точки совпали. Ура! Мы одинаковые. Думали они о равенстве думали и придумали три теоремы:
-если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то треугольники равны;
- если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то треугольники равны;
- если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то треугольники равны.
Много времени проводят вместе друзья и встречают новых
измени немного текст под себя