Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
Ну халява! куча очков за устные задачки в одно действие. 3. Как обычно в теореме синусов BD/AB = sin(30°)/sin(45°) = √2/2; 4. Площадь ABC равна 84. Площадь BMC составляет 1/3 от площади ABC, и равна 28.
Пара замечаний. Медианы делят треугольник на 6 треугольников, одинаковых по площади. Я это тут не буду доказывать, вам это показывали. Площадь ABC можно легко сосчитать по формуле Герона p = (13 + 14 + 15)/2 = 21; p - 13 = 8; p - 14 = 7; p - 15 = 6; S^2 = 21*7*6*8 = (84)^2; но есть и более простой если "слегка присмотреться", то можно заметить, что такой треугольник можно составить из двух прямоугольных треугольников со сторонами 5, 12, 13 и 9, 12, 15. То есть высота к стороне 14 равна 12.
не знаю, посмотри в интернете