Простые задачи, не пойму пойму почему они вызвали у Вас затруднения.
1)
т.к. угол при меньшем основании равен 135, тогда при большем основании угол равен 45
У меня на рисунке меньшее основание сверху.
Опускаем высоту из меньшего основания на большее и получаем прямоугольный треугольник, т.к. угол равен 45 градусов, тогда и второй 45 градусов. Получается это равнобедренный прямоугольный треугольник.
Часть, которую отсекла высота у большего основания будет (5.4-4.2)/2=0.6. Это равнобедренный треугольник следовательно и высота будет 0.6
Sтрап=(а+б)/2 * h где а и б - основания
S= (4.2+5.4)/2 * 0.6
S=2.88
ответ: S=2.88
2)
решение этой задачи строится на теореме.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Простые задачи, не пойму пойму почему они вызвали у Вас затруднения.
1)
т.к. угол при меньшем основании равен 135, тогда при большем основании угол равен 45
У меня на рисунке меньшее основание сверху.
Опускаем высоту из меньшего основания на большее и получаем прямоугольный треугольник, т.к. угол равен 45 градусов, тогда и второй 45 градусов. Получается это равнобедренный прямоугольный треугольник.
Часть, которую отсекла высота у большего основания будет (5.4-4.2)/2=0.6. Это равнобедренный треугольник следовательно и высота будет 0.6
Sтрап=(а+б)/2 * h где а и б - основания
S= (4.2+5.4)/2 * 0.6
S=2.88
ответ: S=2.88
2)
решение этой задачи строится на теореме.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Следовательно h=20/2=10
S=20/2 * 10
S=100
ответ: S=100