1. Противоположные углы ромба равны, следовательно угол ABD = углу BCD, и угол ABC = углу ADC, тогда пусть меньший угол (ABC, ADC) будет х, а больший угол (ABD, BCD) будет у;
2. Сумма большего и меньшего угла ромба равняется 180°, следовательно х+у = 180, и по условию у-х=60°, составим систему:
у+х=180° у-х=60° , сложим вместе два уравнение, тогда: у+х+у-х=240°, получается: 2у = 240°, и у = 120°, тогда х = 180-120=60°;
3. По свойствам диагоналей ромба следует, что они (диагонали) делятся в точке пересечения пополам => AC = 16см, тогда AO=OC=AC/2 = 8см;
4. По свойствам диагоналей ромба следует, что они являются биссектрисой углов ромба => угол OAB = угол BAD/2 = 60°, угол ABO = угол ABC/2 = 30°;
5. Рассмотрим треугольник АВО - прямоугольный, так как угол AOB = 90° (по свойствам диагоналей ромба они расположены перпендикулярно относительно друг друга), угол BAO = 60°, угол ABO = 30°, по теореме об угле в 30° в прямоугольном треугольнике => AB = 2AO = 16см;
Построение ясно из рисунка. Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н. Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат. Диагональ квадрата равна в нашем случае 6√2. Ее половина ОС=3√2. Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14. Необходимо найти перпендикуляр SH к плоскости BCMN. Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые. Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF. Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC). Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO). Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG. FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14. EF находим из треугольника EOF по Пифагору: EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23. ответ: SH=6√14/√23.
2. Сумма большего и меньшего угла ромба равняется 180°, следовательно х+у = 180, и по условию у-х=60°, составим систему:
у+х=180°
у-х=60° , сложим вместе два уравнение, тогда: у+х+у-х=240°, получается: 2у = 240°, и у = 120°, тогда х = 180-120=60°;
3. По свойствам диагоналей ромба следует, что они (диагонали) делятся в точке пересечения пополам => AC = 16см, тогда AO=OC=AC/2 = 8см;
4. По свойствам диагоналей ромба следует, что они являются биссектрисой углов ромба => угол OAB = угол BAD/2 = 60°, угол ABO = угол ABC/2 = 30°;
5. Рассмотрим треугольник АВО - прямоугольный, так как угол AOB = 90° (по свойствам диагоналей ромба они расположены перпендикулярно относительно друг друга), угол BAO = 60°, угол ABO = 30°, по теореме об угле в 30° в прямоугольном треугольнике => AB = 2AO = 16см;
6. P = 4AB = 4*16 = 64см.
ответ: Периметр 64см