В 1) задаче смотри рисунок...проводим две высоты к большому основанию они отсекут два отрезка (эти отрезки маленькие называются полуразность оснований) то есть они равны каждый (49-15)/2=34/2=17 видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34 периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда (2х+3х)/2=5 5х=10 х=2 2*2=4 меньшее основание 3*2=6 большее
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34
периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда
(2х+3х)/2=5
5х=10
х=2
2*2=4 меньшее основание
3*2=6 большее